

Extended Symmetry-Adapted Perturbation Theory (XSAPT)

DNA / ellipticine

	V
HIV /	indinavir

		E _{int} (kcal/mol)		
Method		DNA/ellipticine	HIV/indinavir	
B97M-V $(+counterpoise)^a$		-41.3	_	
ω B97M-V (+counterpoise) ^a		-43.7	_	
HF-3c		-41.7	-132.8	
PBEh-3c		-37.3	-119.1	
$XSAPT+aiD3 (CM5)^b$		-36.7	-106.2	
XSAPT+MBD $(CM5)^b$		-41.7	-125.4	
XSAPT Energy Decomposition				
$E_{ m elst}$		-22.2	-114.9	
$E_{ m exch}$		59.2	190.0	
E_{ind}		-8.0	-65.9	
$E_{\rm disp}$	aiD3+ATM	-65.7	-115.4	
	MBD+esDQ	-70.7	-134.6	

^adef2-TZVPPD basis set. ^bdef2-hpTZVPP basis set

XSAPT+aiD Interaction Energies and Energy Decomposition Analysis

- Benchmark-quality intermolecular interaction energies;
- Energy decomposition analysis provides a powerful interpretive utility;
- Unfolds interaction energies into contributions from electrostatics, Pauli repulsion, polarization, and London dispersion;
- A fully many-body interaction energy protocol:
 - Accounts for many-body polarization effects via charge embedding;
 - Includes many-body dispersion interactions (MBD+esDQ potential).
- Cost scales with monomer size; no need for supersystem calculations;
- Faster than supersystem DFT for the DNA complex shown above (4,651 basis functions);
- Trivially parallelizable across fragments;
- Capable of high-accuracy interaction energies in systems larger than 10,000 basis functions.

Request a free trial at www.q-chem.com