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Description: Students learn how to interpret the results of Hartree-Fock calculations.
The focus of this lab is on physical significance of the canonical molecular orbitals (MOs)
and their energies.

Suggested level: Beginning graduate.
Learning objectives: Learn how to compute and visualize molecular orbitals and how

to connect the computed orbital energies with experimental observables such as ionization
energies (IEs). By analyzing the shapes of the MOs, make predictions about anticipated
shapes of photoelectron spectra. Learn how to determine symmetry of the ionized states.

I. HARTREE-FOCK CALCULATIONS AND KOOPMANS THEOREM

Hartree-Fock wave function is given by a single Slater determinant:

Φ0(N) = |φ1φ2 . . . φN > (1)

composed of N spin-orbitals that satisfy the following equations:

F̂ [{φi}Ni=1]φi(x) = εiφi(x) (2)

The Fock operator, F̂ [{φi}Ni=1], is an effective one electron operator that consists of the one-
electron Hamiltonian (kinetic energy and Coulomb potential due to nuclei) plus a mean-field
Coulomb potential created by all other electrons. Eqns. (1) and (2) look like equations de-
scribing non-interacting electrons (except for the mean-field part in the Fock operator); that
is why Hartree-Fock model is often referred to as a pseudo-independent electron model. The
solutions of Eq. (2) can be interpreted as the states of such pseudo-independent electrons.

Unlike the case of truly non-interacting electrons, the total Hartree-Fock energy is not
the sum of one-electron energies, εi:

EHF =< Φ0|H|Φ0 >=
∑
i∈Φ0

εi −
1

2

∑
i,j∈Φ0

< ij||ij > (3)

Interestingly, EHF and Φ0 are invariant with respect to any unitary transformation of
the occupied orbitals, i.e., those solutions of Eq. (2) that were selected to construct Φ0.
One might therefore wonder whether the solutions of Eq. (2), that is orbitals φi and the
respective energies, εi, have any physical significance. The answer is given by Koopmans’
theorem that states that the canonical Hartree-Fock MOs (those that diagonalize the matrix
of the Fock operator) can be interpreted as the states from which an electron is removed in
an ionization process and the respective energies approximate the IEs:

IE(��@@φi ) = −εi (4)
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The key assumption of the Koopmans theorem is that the ionized state can be approximated
by the Slater determinant composed of the orbitals computed for the neutral species:

Φ(N − 1) ≈ |φ1φ2 . . .��@@φi . . . φN > (5)

A. Determining IEs and electronic configurations of the ionized states of

formaldehyde

1. MOs and Koopmans theorem

Use the ωB97X-D/6-31G* optimized structure of formaldehyde from the “Introduction
to IQmol: Exploring potential energy surfaces” lab (refer to the IQmol tutorial how to build
and optimize structures).

At this geometry, perform a single-point Hartree-Fock calculation using the 6-31G* basis
set. Visualize the MOs and prepare a summary of all occupied orbitals. For each molecular
orbital, write down its symmetry and energy.

Use these results and the Koopmans theorem to answer the following:

1. Write down the electronic configuration of the Hartree-Fock wave function of CH2O
using the symmetry labels of the MOs. What is the symmetry of this wave function?

2. What is the lowest IE of formaldehyde? Write down the electronic configuration of the
ground state CH2O+. What is the symmetry of this wave function?

3. What is the lowest excited state of CH2O+? Determine the excitation energy and
electronic configuration of this state, assign symmetry.

4. Analyze the shapes of the respective MOs and predict what kind of structural relax-
ation (relative to the neutral geometry) these ionized states are likely to undergo.

2. Koopmans theorem versus ∆SCF calculations

Calculate the lowest IE of formaldehyde as the Hartree-Fock energy difference between
the neutral and the cation:

IE = EHF (CH2O)− EHF (CH2O
+) (6)

Use the same geometry and the same basis set as above. To perform the calculation of
CH2O+, specify ‘Charge=1’ and ‘Multiplicity=2’ (doublet state). Compare this so-called
∆E IE with Koopmans’ IE. Answer the following:

1. Which effects are included in ∆E calculations that Koopmans’ theorem neglects?

2. Explain the difference between the two IEs. Do you expect one to be always lower than 
the other or the difference is likely to be system dependent? Hint: think variational 
principle.
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