
 1 

Computing Franck-Condon factors 
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Description: Students will calculate vibrational progressions (Franck-Condon factors) in spectra 
of polyatomic molecules. This assignment builds on the students’ previous experience 
computing optimized molecular structures, vibrational frequencies, and excited or ionized states.  

 
Suggested level: Graduate or advanced undergraduate. 

 
Learning objectives: Understand how the vibrational states of a molecule influence the 
energetics and the probabilities of radiative transitions; understand vibrational profiles of 
electronic spectra. 
 
Requirements:   

- IQmol (http://iqmol.org/downloads.html) 
- ezFCF (http://iopenshell.usc.edu/downloads/). Requires Unix-like operating system (for 

example, Linux or macOS). Instructions to download and install ezFCF are in section 2.2 
of this handout. Note that ezFCF depends on LAPACK and BLAS libraries that may need 
to be installed for the executables to work. 

- A working knowledge of terminal and Unix commands. 
 

1. Theoretical Background 

1.1 The Born-Oppenheimer and Condon approximations 

Radiative transitions are changes in the electronic state of a molecule resulting from the 
absorption or emission of a photon. For such transitions to occur, the energy difference between 
the initial and final states of the molecule must match the frequency of the absorbed (emitted) 
photon. For an incident photon of appropriate energy, the probability 𝑃𝑖𝑓  of exciting a molecule 

from an initial state of wave function 𝜓𝑖 to a final state with wave function 𝜓𝑓 is proportional to 

the square of the transition dipole moment: 
 

𝑃𝑖𝑓 ∝ (∫ 𝜓𝑖(𝒓, 𝑹) 𝝁 ̂𝜓𝑓(𝒓, 𝑹)𝑑𝒓 𝑑𝑹)
2

 (1) 

 
where 𝒓 and 𝑹 are respectively the coordinates of all the electrons and all the nuclei in the 

molecule, and 𝝁 ̂is an operator that describes the influence of the incident electromagnetic 

radiation on the molecule.  
 
Within the Born-Oppenheimer approximation, the state wavefunctions 𝜓(𝒓, 𝑹) can be written as 
the product of a nuclear wavefunction 𝜒(𝑹) and an electronic wavefunction 𝜑(r;R). The latter 
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Descr ipt ion: Students learn how to compute and visualize molecular orbitals using
IQmol and review the key concepts of the MO-LCAO picture of bonding and symmetry of
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to assign their characters (bonding, lone pairs, ant ibonding); review symmetry concepts.

I . B ON D I N G A N D M O-LCA O T H EORY

Molecular orbitals are linear combinat ions of atomic orbitals (hence, MO-LCAO); they
describe one-electron states in polyatomic systems. At the Hartree-Fock level, a single
determinant composed of N spin-orbitals represents an N-electron wave funct ion. MOs
are delocalized leading to electron sharing between the atoms and, consequent ly, chemical
bonding. Orbitals featuring an increased electron density between two atoms (say, X and
Y) are said to be of a bonding character (with respect to XY), whereas orbitals that have a
node (and, therefore, depleted density) are called ant i-bonding. The bond order is defined
as follows:

1

2
(nb − nab) (1)

where nb and nab denote the number of electrons on bonding and anti-bonding orbitals,
respect ively.

The character of the orbitals is defined by looking at where the largest density is. Molec-
ular orbitals are delocalized and to derivea simple bonding picture you may need to consider
a block of two (or more) orbitals. For example, the two canonical Hartree-Fock MOs in water
that have bonding character with respect to OH can be described as linear combinat ions of
two localized σOH orbitals, thus, 4 electrons on these two orbitals give rise to the two OH
single bonds (see Fig. 1).

FIG. 1: Two molecular orbitals of water that

havebonding σOH character, 2a1 and 1b1. Their

combined contribut ion leads to 2 single OH

bonds: (2a1)2(1b1)2 ! (σOH 1)2(σOH 2)2

σ orbitals are oriented along the bonds, whereas ⇡ -orbitals are oriented perpendicular to
the molecular plane.

In a symmetric molecule, orbitals belong to di↵erent irreducible representat ions (irreps)
of the total symmetry group; the irreps di↵er by how orbitals are transformed by di↵erent
symmetry operat ions. For example, the left orbital in Fig. 1 is fully symmetric (a1) and does

http://iqmol.org/downloads.html
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depends only parametrically on the nuclear coordinates. With the further assumption that the 
electronic transition occurs much faster than the timescales of nuclear motion, then the 
transition probability can be evaluated at a given set of nuclear coordinates (e.g., at the 
equilibrium geometry 𝑹𝒆) and it is possible to write: 

 
𝑃𝑖′𝑓′′ ∝ (∫ 𝜑𝑖(𝒓; 𝑹𝒆) 𝝁 ̂𝜑𝑓(𝒓; 𝑹𝒆) 𝑑𝒓 )

2

(∫ 𝜒𝑖′(𝑹) 𝜒𝑓′′(𝑹) 𝑑𝑹)

2

 (2) 

The integral inside of the first parenthesis yields the electronic probability component. For 
electronic excitations, this quantity is related to the oscillator strength.  The integral inside the 
second parenthesis is known as the Frank-Condon Factor (FCF). Note how in equation (2) the 
indices 𝑖′ and 𝑓′′ are used to denote specific (nuclear) vibrational states corresponding to 
electronic states 𝑖 and 𝑓. This lab is focused on calculating FCFs. 

 

1.2 Harmonic vibrational modes 

For a given state, the geometry of a molecule consisting of N atoms is given by a set of 3N 
nuclear coordinates: 𝑹 = (𝑅1, 𝑅2, … , 𝑅3𝑁). Those are, for example, x, y, z, for each nucleus. If 

there is no time-dependent external field acting on the molecule, then the potential energy 𝑉 at 
the geometry 𝑹, displaced by ∆𝑹 = 𝑹 − 𝑹𝒆 from the equilibrium geometry, can be obtained 

through a Taylor expansion about 𝑹𝒆 as:  
 

𝑉(𝑅1 , 𝑅2, … , 𝑅3𝑁) = 𝑉(𝑅𝑒1 , 𝑅𝑒2, … , 𝑅𝑒3𝑁 ) + ∑ (
𝑑𝑉

𝑑𝑅𝑖
)

𝑹𝒆

∆𝑅𝑖

3𝑁

𝑖=1

+
1

2
∑ ∑ (

𝑑2𝑉

𝑑𝑅𝑖 𝑑𝑅𝑗
)

𝑹𝒆

∆𝑹𝑖∆𝑹𝑗

3𝑁

𝑗=1

3𝑁

𝑖=1

+ ⋯ (3) 

 
Since potential energy is indefinite in an additive constant, we can set 𝑉(𝑅𝑒1, 𝑅𝑒2, … , 𝑅𝑒3𝑁) = 0 

and the condition that determines the equilibrium geometry 𝑹𝒆 is precisely that (
𝑑𝑉

𝑑𝑅𝑖
)

𝑹𝒆

= 0. 

Neglecting higher order terms, we can take: 
 

𝑉(𝑅1, 𝑅2, … , 𝑅3𝑁) =
1

2
∑ ∑ (

𝜕2𝑉

𝜕𝑅𝑖𝜕𝑅𝑗
)

𝑹𝒆

∆𝑅𝑖∆𝑅𝑗

3𝑁

𝑗=1

3𝑁

𝑖=1

 (4) 

 

This is known as the harmonic approximation.  

The Hessian matrix formed by the 
𝜕2𝑉

𝜕𝑅𝑖𝜕𝑅𝑗
 derivatives was already presented in another lab [IR & 

NMR Spectra]. From the Hessian, one can obtain the molecule’s normal modes of vibration and 
the corresponding normal frequencies. One way of doing so is to diagonalize the matrix formed 

by the terms: 𝐴𝑖𝑗 =
𝜕2𝑉

𝜕𝑅𝑖𝜕𝑅𝑗
∙ 𝑚𝑖

−1/2 ∙ 𝑚𝑗
−1/2, where 𝑚𝑖 is the mass of the atom to which 

coordinate 𝑖 is linked. The resulting 3N pairs of eigenvalues and eigenvectors can be separated 

into those corresponding to translational motion (three of them), those corresponding to 
rotational motion of the molecule (three except for linear molecules that only have two) and the 
remaining that correspond to vibrational degrees of freedom. It is those 3N-6 eigenvalues and 
eigenvectors (or 3N-5 in the case of linear molecules) that determine the frequencies and 
normal modes of vibration of the molecule, respectively. 
 
The normal frequencies are all different and therefore the normal modes (3N-dimensional 
vectors that specify the amplitude of oscillation of each atom in 3D space) are linearly 
independent and form a basis for the molecule’s internal coordinates. If we consider only the 
3N-6 space of the molecule’s internal coordinates, it is possible to further simplify equation (4) 
with a transformation of coordinates. Transforming the 𝑹 set of coordinates into the “normal 

https://www.q-chem.com/Teaching%20Materials/QChemCompLabs/Lab-IRNMR.pdf
https://www.q-chem.com/Teaching%20Materials/QChemCompLabs/Lab-IRNMR.pdf
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coordinates” 𝑸 (obtained from the vibrational eigenvectors), the terms  (
𝜕2𝑉

𝜕𝑄𝑖𝜕𝑄𝑗
)

𝑹𝒆

become 0 

when the index 𝑗 ≠ 𝑖. That is, the Hessian is diagonal when the internal coordinates’ space is 

expanded in the basis formed by the vibrational normal modes. It is then possible to write: 

𝑉(𝑄1, 𝑄2, … , 𝑄3𝑁−6) =
1

2
∑ (

𝜕2𝑉

𝜕𝑄𝑖
2)

𝑹𝒆

𝑄𝑖
2

3𝑁−6

𝑖=1

 (5) 

 
Back to the nuclear wavefunctions, since the individual harmonic potentials along each 𝑄𝑖 are 
independent, it is possible to express the nuclear wavefunctions as a product of unidimensional 
harmonic wavefunctions along the normal modes: 

 

𝜒(𝑸) = ∏ 𝜒𝑖,v𝑖
(𝑄𝑖)

3𝑁−6

𝑖=1

 (6) 

 
where 𝜒𝑖,v𝑖

(𝑄𝑖) is the harmonic wavefunction corresponding to a linear harmonic oscillator of 

vibrational quantum number v𝑖 along 𝑄𝑖. The fundamental frequency of vibration 𝜈𝑖  of a mode is 

determined from 
𝜕2𝑉

𝜕𝑄𝑖
2. Every mode contributes an energy 𝐸𝑖 = ℎ𝜈𝑖 (v𝑖 +

1

2
) to the vibrational 

energy of the molecule, where v𝑖 is the number of quanta in that vibrational mode. The total 

vibrational energy of the system is: 
 

𝐸 = ∑ 𝐸𝑖
3𝑁−6
𝑖=1 . 

 
 

1.3 Evaluating the FCFs 

The overlap integral can now be evaluated using equation (6) for both the initial and the target 
state. If the normal vibrational modes are equal for both the initial 𝑖 and final 𝑓 states (that is, if 

for a given mode each atom vibrates in the same direction in states 𝑖 and 𝑓) then the overlap of 

the harmonics can be calculated independently over the corresponding coordinates:   

𝑃𝑖′𝑓′′ ∝ (∫ 𝜒𝑖′(𝑸) 𝜒𝑓′′(𝑸) 𝑑𝑸)
2

= ( ∏ ∫ 𝜒𝑖′,𝑗,(𝑄𝑗) 𝜒𝑓′′,𝑗(𝑄𝑗) 𝑑𝑄𝑗

3𝑁−6

𝑗=1

)

2

 (7) 

 

Where 𝜒𝑖′,𝑗,(𝑄𝑗) is the harmonic wavefunction for the initial state 𝑖′ along the normal mode 𝑄𝑗, 

and 𝜒𝑓′′,𝑗(𝑄𝑗) is the harmonic wavefunction of the final state along the same mode. Directly 

evaluating equation (7) is known as the parallel-mode approximation. When the difference 
between the modes prevents the use of this approximation, it is possible to transform the normal 
coordinates of one mode into the other’s. Duschinsky rotations can be used for such 
transformations. 
 

Figure 1 illustrates the way vibrational progression shape the absorption spectral profile of a 
molecule. The ground state (red), and two target states (blue and green) are represented. The 
target states could be electronically excited states or ionized states. The one-dimensional 
harmonic potentials and wavefunctions along a normal mode are depicted in the corresponding 
color.  
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Fig. 1. Influence of vibrational modes and thermal population in the electronic excitation 
spectrum of a molecule. Here, we drop the subscript i that specifies the represented mode and 
use 𝑄 and 𝜈 instead of  𝑄𝑖  and 𝜈𝑖  used in equations 5-7. Adapted from: WIRES Comp. Mol. 

Sci.  12, e1546 (2022). 
 
 
For the ground state, the two lowest vibrational states are shown. Molecules populate these 
vibrational states thermally, according to the Boltzmann distribution. Therefore, transitions from 
the lowest vibrational state (v =  0) will have the largest contribution to the spectra and the 
intensity of the main progression is determined by the overlap of the ground state’s v =  0 

wavefunction and each of the target state vibrational wavefunctions (v′ =  0, 1, 2, … and v′′ =
 0, 1, 2, … ). Transitions from higher vibrational states (v =  1, 2, …) gain importance at high 

temperatures and lead to the appearance of “hot bands.” In other words, hot bands arise from 
the overlap of the v =  1,2, … wavefunction with the target state vibrational wavefunctions. 
 
The total spectrum includes both the main progression and hot bands. Solvation effects result in 
a broadened experimental spectrum like the one shown with black dashed lines on the right.  
 
Figure 1 also shows the electronic vertical (𝐸𝜈′) and adiabatic (𝐸𝑒𝑒

𝑎′) excitation energies for the 
first target state. The vertical excitation energy is the electronic energy difference between the 
two (initial and final) states at the equilibrium geometry of the initial state. The adiabatic 
electronic excitation energy is the energy difference between the two states at their respective 
equilibrium geometries. These quantities are easily determined by quantum chemistry programs 
and are therefore widely used. Accounting for the zero-point vibrational energies (i.e., all v𝑖 =
v𝑖

′ = 0) can give the 0-0 adiabatic excitation energy (𝐸00
𝑎′). From 𝐸00

𝑎′ it is possible to determine 
the energy of a vibronic transition by accounting for the vibrational energies of the initial and 
final states. 
 

 

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1546
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1546
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2. Procedure 

To illustrate the theory presented thus far, students will compute the photoelectron spectrum of 
the phenolate anion and will compare it to the experimental spectrum. It has been established 
that the 𝜔B97X-D/cc-pVTZ level of theory and the parallel approximation are sufficient to 

describe the photoelectron stick spectrum of this molecule. Note that diffuse basis functions are 
necessary for accurate detachment energies, but we will use experimentally determined 
detachment energies. 

 
2.1 Geometry optimization and frequency calculations in IQmol  

In this section students will obtain the normal modes of vibration of the phenolate anion and of 
the molecule resulting after photoelectron detachment.  
Note: Instructors may choose to skip this section and provide students with the normal modes of 
vibration, since the geometry optimization and frequency calculations can be time-consuming 
and require access to local computing resources.  

 
Steps: 

I. Using IQmol, build a model of the phenolate molecule 
II. Optimize the geometry and carry out frequency calculations for the ground state at the 

wB97XD/cc-pVTZ level of theory (see lab Lab1-IQmol-Intro for instructions if needed) 
Note that charge = -1, multiplicity = 1. 

III. Optimize the geometry and obtain the vibrational normal modes for the electron-
detached state at the same level of theory. 

  Mind that charge = 0, multiplicity = 2. 
IV. Verify that, for both the initial and target states, the frequencies of all modes are positive 

(real).  
 
 

2.2 Computing vibrational progressions using ezFCF 

For this section students will need: 
1. The normal vibrational modes of the molecule in its initial and final state. (Refer to 

section 2.1, if not provided) 
2. Access to ezFCF (iopenshell.usc.edu/downloads/) 
3. A working knowledge of terminal and basic Unix commands. 

 

Steps: 
I. Download ezFCF from https://iopenshell.usc.edu/downloads/ and untar the file. If using 

terminal, you can untar using 'tar -xvzf ezFCF_v1.2.tar.gz'. 
 

II. Create a working directory in your computer and copy into it the file “atomicMasses.xml” 
— it can be found directly inside the downloaded folder. 
 

III. Familiarize yourself with the location of the two executables below since you will be 
using them. They are both found inside the downloaded ezFCF_v1.2/bin folder. You can 
also copy those two files into your working directory to access them more easily 

a. “make_xml.py”  
b. Either “ezFCF_linux.exe” or “ezFCF_mac.exe”, depending on your operating 

system. 
 

https://www.sciencedirect.com/science/article/abs/pii/016811769280115H?via%3Dihub
http://iopenshell.usc.edu/pubs/pdf/jpca-117-11815.pdf
https://www.q-chem.com/Teaching%20Materials/QChemCompLabs/Lab1-IQmol-Intro.pdf
https://iopenshell.usc.edu/downloads/
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IV. To run ezFCF it is necessary to create an XML file (a file ended in “.xml”) that 
summarizes the information required for the calculations. Here are the steps to create it: 

a. Copy both output files containing the normal modes of vibration to your working 
directory (the ones obtained in section 2.1). The one corresponding to the initial 
state can be renamed to “initial.out” and the one corresponding to the detached 
state “target.out”. 

b. Open the terminal in your working directory and run the command: 
python3  /path/to/make_xml.py  filename.xml  initial.out  target.out   
Instead of “/path/to/make_xml.py”, use the actual path to the make_xml.py 
executable. Also, you may use any name instead of “filename” as long as you 
use the same file name consistently in the next steps. 
 

V. The steps above generate a new file “filename.xml”. You can now open it and adjust the 
calculation parameters. You can do this on the terminal using (for example) vim or any 
software capable of reading and editing a text file. Initially, let’s just change the 
parameter “excitation energy” from the default value of 1 to the adiabatic 0-0 detachment 
energy of the phenolate anion, which is 2.25 (eV). To do this, search for the tag 
<excitation_energy units="eV"> inside the tag <target_state> and change the 
numerical value from 1 to 2.25. 
 
All other parameters can be kept at their default values for now. Save the file and exit. 
 

VI. To run ezFCF, on the terminal run the command: 
 

/path/to/ezFCF_mac.exe  filename.xml  >  outputname.txt 
 

 Or: 
 /path/to/ezFCF_linux.exe  filename.xml  >  outputname.txt 

 

VII. Check the results of the calculations by opening the newly created “outputname.txt”. It 
will start by reproducing the input provided in filename.xml and readding it. Look for the 
line 
“=== Reading the parallel approximation job parameters ===” followed by 
“===== Overlap matrix of the target state #1 with the initial state =====” 
Is there a warning stating that “The normal modes overlap matrix with the initial state is 
non-diagonal!”? 
This happens because Q-Chem arranges the vibrational modes for each state in order of 
increasing frequency. However, for the parallel approximation the ground and excited 
state normal modes should be strongly overlapping. This may be fixed by reordering the 
modes of the target state so that the normal mode overlap matrix becomes diagonal, as 
discussed next. 

 

VIII. Create another directory and copy into it the XML file you created previously and the file 
“atomicMasses.xml.” In this new directory, open the XML file and reorder the normal 
modes: 

a. Look for the tag “<OPT_manual_normal_modes_reordering” under the tag 
<target_state> it should be at the end of the file and look like this: 

 
b. Delete "OPT_" from the start and the end of the tag to activate this keyword. 
c. On the line new_order= “0 1 2 …” rearrange the modes of the target state so that 

they are matched with a parallel mode on the initial state. To figure out the 
correct ordering, you will need to look back at the overlap matrix obtained in the 
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output file from subsection VII. Modes whose overlap is close to one should be 
paired. For example: 

  
 

 
The line “<!-- old_order="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
22 23 24 25 26 27 28 29"       -->” is just a comment on the file to make the 
reordering easier for the user. It is not necessary, and it has no effect on how the 
program runs. 
 

IX. After saving the changes to the XML file you can now rerun ezFCF. If done correctly, the 
normal mode overlap matrix should now be diagonal.  
 

X. After running ezFCF you obtained a new file named “filename.xml. spectrum_parallel”. It 
contains the same stick photoelectron spectrum that appears in the output but is more 
convenient for plotting since it only contains the final spectrum. The first column presents 
the energy (in eV) of the vibronic transitions, and the second column the corresponding 
intensities. The last column identifies each vibronic transition. For example: 

 

- 0(0) -> 1(2v0) means that the molecule is excited from the lowest vibrational state of 

the electronic ground state (given by the set of vibrational quantum numbers {v𝑖 =
0 | 𝑖 = 0, 1, 2, … , 3𝑁 − 7}) to a vibrational state described by the set {v0

′ = 2, v𝑖
′ = 0 | 

𝑖 =  1, 2, … , 3𝑁 − 7} that belongs to the first electronic target state. Notice that ezFCF 
numbers the vibrational modes starting with 0. The number outside the bracket 
indicates the electronic state (0 means ground state, 1 means first target state). 

- 0(1v2) -> 1(1v2,1v3) means that the molecule is excited from {v0 = 0, v1 = 0, v2 =

1, v𝑖 = 0 | 𝑖 = 3, 4, … , 3𝑁 − 7} in the ground state to {v0
′ = 0, v1

′ = 0, v2
′ = 1, v3

′ = 1, 
v𝑖

′ = 0 | 𝑖 = 4, 5, … , 3𝑁 − 7} of the target state. This is a so-called combination band 

- 0(1v8) -> 1(0) means that the molecule is excited from the thermally occupied 

{v0 = 0, … , v7 = 0, v8 = 1, v𝑖 = 0 | 𝑖 = 9, 10, … , 3𝑁 − 7} in the ground state to the 

lowest vibrational level ({v𝑖
′ = 0 | 𝑖 =  0, 1, 2, … , 3𝑁 − 7}) of the target state. 

Transitions like these final two give rise to “hot bands” in the experimental spectrum. 
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XI. Using your favorite plotting software, compare the stick spectra you obtained with the 

experimental one below. The experimental data can be downloaded from Q-Chem's 
github collection of teaching resources.  

 
Fig. 2. Photodetachment spectrum of phenolate. 

 
You may have noticed that there are many optional tags and parameters that can be modified in 
the XML file. This includes parameters modifying the temperature, number of excitations, 
options to excite only a subspace of vibrational frequencies, or using Duschinsky rotations 
instead of the parallel approximation. The ezFCF manual provides information on their meaning 
and function. Feel free to explore them. You can also learn more from watching the following Q-
Chem Webinar: https://www.youtube.com/watch?v=ZGqij5RY-6M.    
 
  

https://iopenshell.usc.edu/downloads/ezFCF_manual.pdf
https://www.youtube.com/watch?v=ZGqij5RY-6M
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Questions:  
 

1. Show the computed spectrum. Does it agree with the experimental spectrum?   
 

2. How many vibrational modes does the phenolate anion have? 
 

3. Using the initial and target state 𝜔B97X-D/cc-pVTZ geometry optimizations and frequency 

calculations, what are the 𝐸𝑒𝑒
𝑎′ and 𝐸00

𝑎′ energies for the photodetachment of the phenolate 

anion? How do those compare to the 2.25 eV value used in ezFCF? 
 

4. You may expect that the 𝐸00
𝑎′

 should be close the 2.25 eV value we used in the XML file. What 
can explain the difference between the value you computed and the 2.23 eV value? 

 
5. Is the harmonic approximation a better approximation for high or low frequency modes? 
Explain your answer. 

 
6. Why does the agreement between theory and experiments appear better at lower 
energies and deviates more at higher energy? 

 
7. Repeat the phenolate calculation with temperature set to 0 instead of 300. What 
changes? Explain the reason for this change. 

 
8. Looking at the filename.xml.spectrum_parallel file, identify the main transition responsible 
for the hot band in the experimental spectrum. 

 
9. Looking at the filename.xml.spectrum_parallel file, identify the most intense vibronic 
transitions in the phenolate detachment spectrum. Those intense transitions, alone or in 
combination with other bands, give the vibronic progression in the photoelectron spectrum. 
Identify which excited-state vibrational mode is involved in these intense transitions. Use the 
frequency calculation and IQmol to visualize this vibrational mode. Include a picture of the 
vibrational mode in your report. 

 
Bonus questions (advanced mode): 
 

1. Repeat the calculation for phenolate using the vertical gradient approximation (see 
manual). How does the spectrum compare with the parallel mode approximation approach? 
 
2. Repeat the Franck-Condon factor calculations using the parallel mode approximation for 
formaldehyde’s excitation to the first excited state. You will need to employ TD-DFT 
calculations to calculate the energetics and geometry of formaldehyde’s excited state. Use 
the 𝜔B97X-D functional and cc-pVTZ basis set again for all calculations. Make sure you 

obtain all positive frequencies for the excited state of formaldehyde (you may need to turn 
off symmetry and manually tweak the geometry of formaldehyde in the excited state to 
break symmetry). How does the computed spectrum agree with the experimental data 
shown on the next page? Comment on why there is (or isn’t) a good agreement. Would you 
expect the vertical gradient approximation to work for this system? 
 
(hint: what does the potential energy surface of the excited state look like along the out-of-
plane pyramidalization mode?) 

https://iopenshell.usc.edu/downloads/ezFCF_manual.pdf
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Fig.3. Vibrational progression of S0-S1 transition in formaldehyde. 


