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One of the major deficiencies of the standard density functionals is their inability to describe dispersion
interactions. Becke and Johnson recently proposed a conceptually simple yet accurate dispersion model called
the exchange-dipole moment (XDM) model, which allows the calculation of both intermolecular and intramo-
lecular dispersion interactions with density functional theory (DFT). In this paper, we present an efficient
self-consistent-field (SCF) solution of the XDM model. We also give detailed analysis of the post-SCF ap-
proach in which the dispersion term is added to the Hamiltonian as a perturbation, and show that it has an error
on the order of 107> in density matrix due to the addition of dispersion to the Hamiltonian. In addition, for
gradient calculations with respect to the atomic movement, we introduce a further approximation in which the
electronic part of the XDM gradient formula is omitted, and show that it yields an error smaller than 107> a.u.
These approximations offer a simple and efficient route with good precision for the implementation of XDM
model and other dispersion models into existing DFT codes. The effectiveness of our implementation is
demonstrated through several examples. The first example shows that inclusion of the XDM model leads to
much more accurate prediction of enthalpies of formation of straight-chain alkanes than does the Becke
three-parameter Lee-Yang-Parr (B3LYP) functional. The inclusion of the dispersion is also shown to improve
the accuracy in the calculation of isomerization energies and bond-dissociation energies of alkanes. The last
example shows that the qualitative difference in optimal geometries of a tyrosine-glycine peptide, calculated
using the B3LYP functional and the second-order Mgller-Plesset method, essentially disappears when XDM is

added to the DFT calculation.
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I. INTRODUCTION

Density-functional theory (DFT) has been the method of
choice for computational chemistry for more than a decade,
especially for molecular systems with more than a few dozen
atoms, because it is accurate and computationally efficient.
While standard DFT functionals describe chemical bonds
well, one major deficiency is their inability to describe dis-
persion interactions [van der Waals (vdW) interactions] that
exist between any two well-separated atoms. Although rela-
tively weak compared to normal chemical bonds, dispersion
interactions nonetheless play a crucial role in a wide range of
fields, including structural biology (DNA, proteins, etc), sur-
face chemistry, and polymer science. The deficiency of DFT
with respect to accurately modeling dispersion interactions is
well known, and, not surprisingly, efforts have been made to
address this problem. One approach is to include vdW com-
plexes (dimers that are bound by dispersion) in the training
sets when the empirical parameters of the functionals are
optimized. It is based on the observation that some exchange
functionals predict an attractive potential-energy curve in the
region where density is small and the density gradient is
large [1]. An example of such a functional is M06 [2]. How-
ever, this type of functional does not yield the correct long-
range R~® behavior. Another approach is to explicitly add the
dispersion interaction between two well-separated electron
densities based on physical arguments [3-7]. While these
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methods display the correct asymptotic behavior, they have
not been shown to be applicable for intramolecular interac-
tions or to be efficient. For instance, Dion et al. [8] proposed
a simplified version of an earlier model [4], which was
implemented self-consistently as a density-functional model
[9.10]. It is however computationally demanding, involving
double numerical integrations. The current practical solution
to the DFT dispersion problem is to add an empirical disper-
sion term based on an analogy to the vdW term in molecular
mechanics [11-16]. While this method is simple to imple-
ment and adds little computational cost, its accuracy is ulti-
mately limited by the fact that it does not take into account
the variation in the electronic structure of an atom in a
molecular system.

Recently Becke and Johnson (BJ) [17-21] published a
new model for the dispersion interaction, called exchange-
dipole moment (XDM) model. The XDM model stipulates
that the dispersion attraction between two molecules is due
to the dipole moment of the instant exchange hole of one
molecule and the induced dipole moment of the second mol-
ecule. This model is conceptually simple and yet has been
shown to yield very accurate dispersion coefficients (the co-
efficients to R™%, R™%, and R~'°) without empirical fitting pa-
rameters Furthermore, it can be applied to both intermolecu-
lar and intramolecular interactions with a simple density-
partitioning scheme and a damping formula with one or two
fitting parameters. To quantum-chemical practitioners, the
XDM model is especially appealing because it can be made
to depend only on the electron spin densities and their gra-
dients, which are the same list of variables as most of the
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current functionals, making it possible to utilize existing ef-
ficient numerical algorithms [22,23].

We have recently devised an efficient implementation of
the XDM model for energy and nuclear derivatives in the
Q-CHEM program [24], which enables structural and vibra-
tional calculations with vdW interactions to be carried out
with little additional computational cost. The full self-
consistent-field (SCF) calculation of the DFT energy and cal-
culation of the full analytical gradient allow routine DFT
calculations with electronic dispersion effect. Furthermore,
we will demonstrate the effectiveness of a post-SCF imple-
mentation that treats the dispersion interaction as a perturba-
tion while still obtaining the energy and nuclear derivatives
with sufficient accuracy. In addition, we will show that neg-
ligible error is introduced by excluding the electronic part of
the dispersion from the nuclear derivative calculation. This
has important practical implications because the dispersion
interaction has complicated dependency rules on the electron
spin densities and their gradients, making its efficient imple-
mentation difficult, or even impractical.

The effectiveness of our implementation of the XDM
model will be illustrated through some exemplary cases
where DFT has failed before in a remarkable way. One such
case is the total energy of alkanes. It has been reported that
Becke three-parameter Lee-Yang-Parr (B3LYP) functional,
the most popular DFT functional, underestimates the total
energy of the linear n-alkanes with the error increasing as the
size of the alkane increases [25]. Furthermore, it has been
found that B3LYP tends to underestimate the energy of the
branched isomer of the alkane [26] and the dissociation en-
ergy of simple organic molecules [27]. One possible expla-
nation offered for the observed errors was the lack of disper-
sion correlation. The last case considered is the structure of a
dipeptide (tyrosine-glycine), where B3LYP and the second-
order Mgller-Plesset (MP2) method give remarkably differ-
ent structures for the same conformer [28]. The MP2 results
were assumed to be more reliable since these include disper-
sion interactions.

II. CALCULATION OF DISPERSION ENERGY
WITH XDM

Fundamental to the XDM model is the calculation of the
norm of the dipole moment d of the exchange hole at a given
point r:

dg(r)=—Jhg(r,r’)r’d3r’—r, (1)

where o is the symbol for the spin and h,(r,r’) is the
exchange-hole function. Two types of exchange-hole func-
tions were employed by BJ. One was the Hartree-Fock (HF)
exchange hole that depends explicitly on the occupied mo-
lecular orbitals (MOs). The other was the Becke-Roussel
(BR) model exchange hole for the Becke-Roussel exchange
functional (BR89) [29]. Although BJ employed the HF
exchange-hole function most of the time, they pointed out
that BR exchange-hole function yields essentially the same
results. In our implementation, we chose the BR exchange
hole because of its computational efficiency. It is a function
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of the (spin-resolved) electron density, its gradients, and the
kinetic-energy density, i.e., the same set of variables as for
meta-generalized gradient approximation functionals. Ac-
cordingly, it can be evaluated in linear scaling with respect to
the size of the system. In contrast, using HF exchange-hole
function requires the evaluation of MO pairs at each grid
point with the numerical integration, the computational cost
of which scales quadratically to cubically with respect to the
size of the system.

The original BR exchange model is not given in closed
analytic form and requires the solution of a nonlinear equa-
tion at each grid point. In our implementation, we have de-
veloped an analytical expression by using nonlinear interpo-
lation and spline techniques. While the details of the
analytical expression have been published elsewhere [30], it
suffices to say that the fitting produces a very small mean
absolute deviation on the order of 1077 for the whole range
of densities and practically identical atomization energies
and geometries compared with the numerical solution. Fur-
thermore, the analytical expression makes it more feasible to
calculate and facilitate the derivation of derivatives neces-
sary for precise calculations of the potential of the XDM
energy functional and of the gradients with respect to nuclear
motions as discussed below.

In BJ’s original implementation, the dispersion energy
was added to the total DFT energy as a perturbation, i.e., the
electron spin densities not being optimized with respect to
the total energy through the SCF method. The efficient cal-
culation of the forces among the atoms, required for a struc-
tural computation, relies on the optimized densities [31].
However, since the dispersion energy is a small fraction of
the total energy, it is quite possible that the added dispersion
term would not alter the electron densities significantly once
the latter are optimized with respect to the other parts of the
functional. Hence, the perturbative approach may yield an
excellent approximation to the precise SCF solution. In this
paper, we will compare the two approaches for the calcula-
tion of the DFT energy with XDM and its gradient with
respect to nuclear motions.

BJ proposed two forms for the dispersion energy. One
includes interatomic R™° interactions only [17-19], and the
other includes higher-order terms (R™®,R~%,R™10) [20,21].
We chose the former for the investigation of the effect of
SCF because the formalism is somewhat simpler for the deri-
vation of the corresponding Fock matrix elements. We will
denote this form of XDM as XDM6 and the one including
higher-order terms will be denoted as XDM10. The formula
for the dispersion energy within the XDM6 framework is

Ceii
Eypw= > Eygwii=— 1] )
aw % Wi % RS+ kC i/ (ES + ES) @

In this equation, R;; is the distance between two atoms i and
J, and C6,ij’s are the interaction coefficients, the calculation
of which will be shown below. The second term in the de-
nominator is the damping factor so that the dispersion energy
becomes a constant as the two atoms come close, which
allows the calculation of intramolecular dispersion. In the
damping term, Elc is the correlation energy of the free atom i,
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TABLE 1. Energies of vdW molecular complexes obtained with the B3LYP(XDM6) and B3LYP
+XDM6 methods using 6-31G™ basis set. E; is the dispersion energy with B3LYP(XDM6), E, is the total
B3LYP(XDM6) energy, E; is the dispersion energy with B3LYP+XDM6, and E, is the total B3LYP
+XDM6 energy. (The values of E5 and E,4 are not directly listed.) Direct inverse of iterative space (DIIS)
error measures the deviation of the density matrix compared to the SCF-converged one. All energy values are

in a.u.
logyo(| )

COmp]eX El E2 E4—E2 DIIS error El/E2 (E4—E2)/E2 (E3—E])/El
He-He —-0.000034 -5.814087  -9.70 -5.30 -5.23 -10.46 -5.23
He-Ne -0.000094  -131.801563  -8.80 -5.52 —-6.15 -10.97 -4.77
He-Ar -0.000113  -530.424174  -8.22 =5.17 —-6.67 -11.26 -4.27
Ne-Ne -0.000172  -257.789139  -8.92 =5.72 —6.18 —-11.41 -5.16
CH,HF -0.002570  -140.943865  -7.25 -5.20 -4.74 -9.52 —-4.66
H,S-H,S -0.004121  -798.777403  -6.54 -4.73 -5.29 -10.01 -4.15
Ph-Ph —-0.023903  -464.519381  -5.62 =5.12 -4.29 -8.42 -4.00

and « is a dimensionless empirical parameter. We will use
k=800 as suggested by BJ [19], which is optimized for a set
of weakly bound systems with Hartree-Fock plus Becke-
Roussel correlation functional [32].

Although the above expression of dispersion energy is the
same as the molecular mechanics-like empirical formulas
[11-15], the coefficients Cg;; are determined differently. In
the empirical formalism, the coefficients are constants ob-
tained by fitting to experimental and theoretical data. In the
XDM model, they are functions of electron spin densities
through the exchange-hole function, the atomic polarizabil-
ity, and the density partition and thus take into account the
changing environment of an atom in a molecule. To evaluate
the dispersion in the SCF framework, one needs to evaluate
its contribution to the Fock matrix by taking the derivative of
E, w with respect to the spin-resolved density matrix [33]:

o &EvdW 2 UdWll lacét (3)
= aPy, iz Ciy aPy,

Cei; 18 a complicated function of electron densities p,
[0=(a,P)], their gradients Vp,, the Laplacians V?p,, and
the kinetic-energy densities 7,. After taking the derivative
dCs i/ &PZV, the final expression for the XDM contribution to
the Fock matrix becomes

Fr,=- GZ[Gwr +Hw(d2+d)]
5le ;
ad> ¢,
2 l wip,
~ 9&, P
go'z(plf’vp0'7vzp0"7-(7)' (4)

The details and the derivations of the above equations are
given in Appendix A. For the efficiency of calculation, the
quantities that are independent of electron positions such as
G, and H; can be calculated with little CPU cost before the
loop over the grid points. The only additional loop in evalu-
ating the dispersion contribution to the Fock matrix remains

the one over the atoms overlapping with the current grid
point. The cost associated with this loop is minuscule com-
pared to the other major steps in a DFT calculation.

It is important to note that XDM is designed to be an
add-on functional and therefore can in principle be combined
with other functionals. BJ used the Hartree-Fock exchange
and the Becke-Roussel correlation functional as reference
functionals when optimizing the damping parameters. We
choose to combine XDM (with its original parameters) with
B3LYP [34,35] instead, as it is the most widely used func-
tional to date and has been proven to be versatile. We will
denote the SCF solution of the combination of B3LYP and
XDM6 as “B3LYP(XDM6)” and the addition of XDM6 to
the SCF solution of B3LYP, i.e., the pertubative approach, as
“B3LYP+XDM6.”

Table I lists the results of our energy calculations with
B3LYP(XDM6) and B3LYP+XDM6 for some van der
Waals complexes. The basis set is 6-31G™ with the integra-
tion grid of pruned 50 radial points and 194 angular points
[36]. [The basis-set superposition error (BSSE) is not rel-
evant here because only the total energies of the complexes
are compared.] The second column of Table T lists the dis-
persion energy (E;) of each complex. One can see that it
increases with the size of the system (in either the number of
atoms or the number of electrons). The third column lists the
total energy as calculated with SCF (E,). The fourth column
displays the absolute differences (log,o|E4s—E,|) in the total
energies of the two methods, with E, being the total energy
of BBLYP+XDM6. As one can see, the error introduced by
the perturbative approach is orders of magnitude smaller
than the dispersion energy, and it increases with the size of
the system. The same trend is observed with the dispersion
energy. However, the small difference in total energy does
not necessarily indicate that the difference in electron density
between the two approaches is negligible. Listed in the fifth
column is the so-called DIIS error which is the root mean
square of the permutation of the density and the Fock matrix.
DIIS error is routinely used to measure the SCF conver-
gence. In Q-CHEM, an SCF energy calculation is considered
converged when this error is smaller than 107> for a single-
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point calculation, and smaller than 1078 for a calculation of
energy gradient with respect to nuclei used in a molecular
geometry optimization. The DIIS error listed in Table I is the
result of using the B3LYP density matrix to build the Fock
matrix with the dispersion functional added to the Hamil-
tonian. Thus, it measures the error of the B3LYP density
matrix as an approximation to the solution of B3LYP(XDM).
As one can see, the error of the B3LYP density matrix is
about 107 and does not change significantly with respect to
the molecular size. This trend is different from that of the
dispersion energy.

To help understand these two trends with respect to the
molecular size, we calculated two additional quantities that
are listed in Table I. One is the fraction of the dispersion
energy relative to the total DFT energy for each molecule
(sixth column). The other is the absolute value of the error of
the perturbative method in energy relative to the total energy
(seventh column). From these quantities, it is evident that the
dispersion energy relative to the total DFT energy does not
vary much with respect to the size of the molecule and is
similar in magnitude to that of the DIIS error. On the other
hand, the relative error in energy of the perturbative method
is roughly equal to the square of the dispersion energy rela-
tive to the total energy (E,/E,). (Note that the numbers listed
in these columns are in logarithmic scale.) This can be ex-
plained as follows. The reference (B3LYP) density matrix is
obtained from the diagonalization of a Hamiltonian that de-
viates slightly from the “true” Hamiltonian due to the lack of
the dispersion term, and therefore has an error of similar
magnitude to that of the deviation. The deviation in the
Hamiltonian can be approximately measured by the magni-
tude of the dispersion energy relative to the total energy,
which explains the similarity between the fifth and sixth col-
umns. It is useful in this vein to compare the relative total
energy since the density matrix is always normalized. The
total energy calculated with this slightly deviated density ma-
trix will have an error that is proportional to the square of the
deviation of the density, since the energy is invariant to the
first order of the SCF-converged density matrix. It should be
pointed out that the range of the dispersion energy relative to
the total energy (~107°) is consistent with BJ’s estimation
that the dispersion energy is about 1/1000 of the correlation
energy [19], and the fact that the correlation energy is about
1/100 of the total energy. For completeness we also list the
error the deviated density matrix causes to the dispersion
energy alone, which is roughly proportional to the errors of
the density matrix. This is not surprising given that the dis-
persion interaction coefficients are more or less proportional
to the electron density. Overall, we can conclude from Table
I that the perturbative method introduces an error on the
order of 1073 in the density matrix, and its error in total
energy is approximately equal to the square of the error in
density matrix.

III. NUCLEAR DERIVATIVES
OF THE DISPERSION ENERGY

The significance of the error of the perturbative scheme
can also be measured by its impact on the calculation of the
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analytical gradient of the total DFT energy with respect to
the nuclear motion. The efficient evaluation of the analytical
gradient depends on the SCF convergence of the DFT energy
and densities. Assuming the SCF convergence of the densi-
ties, the additional gradient due to the dispersion interaction
[Eq. (2)] has two parts, classic and electronic:

6E> R E* RS
Eyw=2 UZ,‘W’H UR, - 2 —EIC, ()
ix 6ix i#j  Cej

where x is a nuclear perturbation. The first term in the above
equation is the classic part, assuming the dispersion coeffi-
cients do not change with the nuclear perturbation. Cg’fl]j in
the second term is the partial derivative of the dispersion
coefficient due to the movement of the basis functions of the
perturbing nucleus, reflecting the changing electronic envi-
ronment. The final expression for the second term is given by
Eq. (B6) of Appendix B, along with the derivation. It should
be noted that the major computational step of evaluating this
equation is the same as in a regular DFT functional; i.e., little
additional computational cost is incurred by adding the
XDM dispersion force.

The optimized geometries of the complexes with the full
analytical gradient are listed in Table I with B3LYP(XDM6).
The approximate B3LYP+XDM6 gradients based on the
B3LYP densities are calculated at those geometries, and the
largest error of the gradient components for each complex is
listed in the second column of Table II. The errors are on the
order of 10~ a.u. or less, much smaller than the usual con-
vergence criterion of a geometry optimization. This magni-
tude of error is perhaps not surprising since it should be
proportional to the error of the density matrices.

We have also examined the approximation of including
only the classical part of the XDM gradient calculation
within the B3LYP+XDM. Our conjecture is that the contri-
bution of the electronic part of this gradient may be negli-
gible for the following two reasons. One is that the disper-
sion energy changes much more rapidly with respect to the
interatomic distance due to its R~ scaling. Second, the shape
of the exchange hole, which determines the dispersion coef-
ficient, is predominantly influenced by the local bonding
structure, and will likely change little during a conforma-
tional change, in which the dispersion plays an important
role. This approximation will be denoted as CG. Listed in the
third column of Table II is the largest error of the gradient
components for each complex with B3LYP+XDM6 with the
CG approximation (denoted as B3LYP+XDM6+CG), com-
pared to the full implementation of the analytical gradient
with B3LYP(XDM6). As one can see, the largest error is
2.5X107* a.u. among the complexes [(C¢Hg),], which is
within the tolerance of regular geometry optimizations.

To examine further the applicability of B3LYP+XDM6
with the CG approximation to larger systems, we have cal-
culated the errors of the analytical gradients of this scheme
with different basis sets for two floppy systems: a cluster of
10 methane molecules [(CHy) o] and a cluster of 20 water
molecules surrounding a methane molecule [(H,0),0CH,].
The structures of the two clusters are shown in Fig. 1. The
structure of (CHy),, is optimized with B3ALYP(XDM6) with
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TABLE II. Errors of the first and second nuclear derivatives of the dispersion interaction obtained using
the B3ALYP+XDMG6 functional with and without classic gradient (CG) approximation. The errors of the
second derivatives are measured by the errors in the calculated harmonic frequencies.

Errors of Errors of
first derivatives harmonic frequencies
(a.u.) (cm™)
Complex B3LYP+XDM6 B3LYP+XDM6 with CG B3LYP+XDM6 with CG
He-He 0.0000000 0.0000000 0.0
He-Ne 0.0000000 0.0000001 0.0
Ne-Ne 0.0000001 0.0000007 0.0
Ne-Ar 0.0000000 0.0000003 0.0
H,S-H,S 0.0000187 0.0000245 1.7
CH4-NH; 0.0000175 0.0000259 4.0
CH,4-HF 0.0000121 0.0000228 2.8
Ph-Ph 0.0000371 0.0002509 2.0

6-311++G(d,p) and full analytical gradient. The maximum
component of the nuclear gradients is 1.7 X 10™* a.u. at the
converged geometry. The nuclear gradient of the same geom-
etry is calculated with B3LYP+XDM6+CG, with a result-
ing maximum component of 1.8 X 10~ a.u. The same calcu-
lations are carried out for (H,0),,CH, with a 6-31+G(d)
basis set. The gradient calculated with B3LYP+XDMG6
+CG has here a maximum component of 5.7 X 107* a.u.,
compared with that of full analytical gradient, 2.7
X 107 a.u. Overall, the error of CG approximation is on the
order of less than 10~ a.u. when combined with the post-
SCF approximation.

The CG approximation for the calculation of the gradient
simplifies the implementation of the analytical gradient for-
mula, and even more so for the second derivative of the DFT
energy, as the algorithm for the second derivative is consid-
erably more complicated. The fourth column of Table II lists
the largest errors in harmonic frequency, which are directly
calculated from the second nuclear derivatives, using the
B3LYP+XDM and the CG approximations for all the de-
rivative calculations for each complex. The precise reference
values are calculated with finite difference of the
B3LYP(XDMS6) gradients. As one can see, the largest differ-
ence is about 4 cm™!, which happens at a low frequency of
33 cm™!, and is well within the error of a DFT harmonic
frequency calculation.

.
ﬁl_,
s

FIG. 1. (Color online) Optimized structures of the methane clus-
ter and the water-methane clusters.

We note that while the error of the perturbative scheme
has been illustrated only for the XDM6 model, the underly-
ing argument should be general for the reason that the dis-
persion is very small compared to the total energy. Therefore
it should be a good approximation to the XDM10 model that
includes higher-order terms, and for other electronic disper-
sion models. Indeed, Thonhauser et al. [9] showed qualita-
tively through some exemplary calculations within the dis-
persion model of Dion et al. [8] that the perturbative and the
SCF approaches yield approximately the same results. This
is noteworthy as the derivative of the XDM10 with respect to
the electron density, as well as those of other models, is very
complicated.

IV. APPLICATIONS OF THE XDM MODEL

With the efficient implementation of the XDM model for
derivatives presented here, it is now possible to routinely
carry out DFT calculations with dispersion effects included.
We will demonstrate the effectiveness of this methodology
by applying it to some well-studied cases in the literature,
most of which require calculations of nuclear gradients of the
intermolecular and intramolecular dispersion energies. The
grid for the numerical integration of the exchange-correlation
(XC) functionals is composed of unpruned 120 radial points
(Euler-Maclaurin scheme [37]) and 302 angular points (Leb-
edev scheme [38]).

A. Total energies of linear alkanes

In their comparison study of Gaussian-3 theory [39] ver-
sus DFT, Redfern et al. [25] calculated the enthalpies of
formation of the n-alkanes with B3LYP and observed that
there is a significant accumulation of errors as the chain
length increases, with an error as large as 30 kcal/mol for
hexadecane. Dispersion was suspected as one possible source
of error. We recalculated the enthalpies of formation for the
same series of molecules using the same basis set [6-311
+G(3df,2p)] and structures but with B3LYP+XDM6 and
B3LYP+XDMI10 functionals. The results are listed in Fig. 2
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FIG. 2. (Color online) Plots of deviations from experimental
formation enthalpies of straight-chain alkanes obtained at G3,
B3LYP, B3LYP+XDM6, and B3LYP+XDMI1O levels of theory.

and Table III. As one can see, both versions of XDM have
essentially corrected the erratic behavior of B3LYP total en-
ergy with respect to the size of the system. In particular, the
error for hexadecane is dramatically reduced from 30 to 3—4
kcal/mol. It also shows the generality of the XDM model as
the few adjustable parameters of the model were not reopti-
mized with B3LYP. XDM10 still shows a slight increase in
error with respect to the molecular size, but it is greatly
reduced from the error of B3LYP. The residual error could in
part be due to the fact that the damping function for XDM10
is optimized specifically for B97 functional. We intend to
investigate this in more detail in a subsequent study.

B. Isomerization energy of octane

After the finding that standard B3LYP fails to predict the
total energy of linear alkanes, various studies on different
alkane isomers have shown that DFT often fails to accurately
predict the isomerization energy as well. The lack of disper-
sion in the functionals has been attributed to the problem
[26,40,41]. In particular, it has been found [26] that B3LYP
favors the linear octane (CgH,g) versus its branched isomer
by 8.4 kcal/mol (the structures of linear and the branched
octanes are shown in Fig. 3). This is in sharp disagreement

TABLE III. Deviations in kcal/mol from experimental formation
enthalpies of straight-chain alkanes obtained using the B3LYP,
B3LYP+XDM®6, and B3LYP+XDMI10 functionals.

No. of carbons

in alkanes G3 B3LYP B3LYP+XDM6 B3LYP+XDMI10
1 025 1.62 2.60401 —2.48108
2 0.31  0.60 3.18832 —2.72485
3 033 146 3.18150 —2.33299
4 040  3.69 3.12870 —-1.91265
8 0.88 12.50 2.10234 0.01937
12 1.88  20.90 1.59216 1.13049
16 1.91 30.26 2.06271 3.51179
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FIG. 3. The structures of the linear and the branched conformers
of octane.

with the experimental result, which favors the branched iso-
mer by about 1.9 kcal/mol. MP2, on the other hand, favors
the branched isomer by 4.6 kcal/mol. We have calculated
these two octane conformers using a similar approach,
namely, the full geometry optimization calculations using the
MP2/TZV(d,p) method (TZV denotes triple zeta valence),
followed by a single-point energy calculation using the
B3LYP+XDM6 and the B3LYP+XDM10 methods with the
augmented correlation-consistent polarized valence qua-
druple zeta (aug-cc-pVQZ) basis set. Our results show that
the linear octane is predicted to be more stable than the
branched octane by 4.0 kcal/mol with B3LYP+XDM6
method and by 5.2 kcal/mol with B3LYP+XDMI10. These
estimates are an improvement compared to those of B3LYP
and in the same range as those by the empirical vdW method
(5.5 kecal/mol) [26]. However, they still fail to predict the
correct relative stability. The remaining errors after the dis-
persion correction support the observation in Ref. [26] that
the dispersion interaction is not the only major effect that is
missing from the current functionals.

C. Bond-dissociation energy

Alkanes and other simple organic molecules have also
been used to illustrate another deficiency of DFT, namely,
the underestimation of the bond-separation energy
[27,42,43]. When a molecule is dissociated into two species,
the dispersion attraction between the two species inside the
single molecule will disappear as they are separated after the
dissociation. DFT underestimates the separation energy by
not including this dispersion interaction in the energy bal-
ance. For example, Check and Gilbert [27] showed that
B3LYP systematically underestimates the dissociation ener-
gies of the C-C bond of a series of progressively methyl-
substituted alkanes, while MP2 overestimates it. Their results
are listed in Table IV. We have calculated the dissociation
energies with the B3LYP+XDM6 and B3LYP+XDMI10
methods, and using the 6-311++G(d,p) basis set including
a  zero-point  energy  correction obtained from
B3LYP/6-311++G(d,p). Overall, this is a very similar ap-
proach to the one used in the Ref. [27]. The results of our
calculations are listed in the last two columns of Table IV. As
one can see, both the XDM6 and XDMI10 corrections re-
duced the errors. As in the case of the isomerization of oc-
tane, the remaining errors are likely due to other deficiencies
of B3LYP.

D. Structure of a dipeptide

The final test case is a conformational study of a dipep-
tide. Van Mourik et al. [28] carried out high-level electronic
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TABLE IV. Experimental and calculated bond-dissociation energies of the internal C-C bond

(kcal/mol).

Reaction Expt. B3LYP MP2 B3LYP+XDM6 B3LYP+XDMI10
(CH3);C-CH; — (CH;)3C+CH; 869 737 882 77.0 76.1
(CH3)3C-CH,CH; — (CH3)C +CH,CHs; 845 692 879 73.1 72.0
(CH;);C-CH(CH,), — (CH;);C+CH(CH), 815 632 863 68.3 66.9
(CH3);C-C(CH;)3 — (CH3)sC + C(CHs)s 771 560  84.1 62.5 60.7

“Experimental data from Ref. [44].
PCalculations from Ref. [27].
“Our calculations.

structure calculations of molecular conformations and rela-
tive stabilities of tyrosine-glycine and found that the gas
phase structure of the dipeptide varies qualitatively between
B3LYP and MP2 optimizations. Particularly interesting is
one conformation where B3LYP with 6-31+G(d) basis set
yields a partially open-book structure [Fig. 4(a)], whereas
MP2 predicts a closed-book structure [Fig. 4(b)] with the
same basis set. Single-point calculations on those two geom-
etries show that MP2 favors the closed-book structure by 3.1
kcal/mol and B3LYP favors the partially open-book one by
7.9 kcal/mol. The authors of the paper investigated the basis-
set effect, including basis-set superposition error, and attrib-
uted the difference partially to the dispersion which is miss-
ing in the B3LYP calculation. We carried out geometry
optimizations using the B3ALYP+XDM6+CG and B3LYP
+XDM10+CG models with the 6-31+G(d) basis set and
with the CG approximation. The structure calculated by the
B3LYP+XDM6 method is depicted in Fig. 4(c) (B3LYP
+XDMI0 predicts a very similar final geometry). As one can
see, the XDM-corrected structures closely resemble the MP2
optimized closed-book structure. We have also calculated the
total DFT energies of B3LYP+XDM6 and B3LYP
+XDMIO0 at partially open-book B3LYP structure [Fig. 4(a)]
and compared them with those of the respective optimized
structures. B3LYP+XDM6 predicts an energy difference of
1.1 kcal/mol, and B3LYP+XDM10 predicts 1.0 kcal/mol in
favor of the closed-book structures. These energy differences
are smaller than that of MP2 but have the same sign. To
verify the CG approximation, we also performed a geometry
optimization using the B3LYP(XDM6) with full analytical
gradient, which yielded a structure that was practically iden-
tical to that of BALYP+XDM6+CG.

FIG. 4. (Color online) Structures of the optimal geometries of
the tyrosine-glycine peptide calculated using the 6-31+G™ basis set.
The calculations are based on (a) B3LYP, (b) MP2, and (c)
B3LYP+XDM6. The numbers indicate the distance between oxy-
gen of tyrosine and hydrogen of glycine, measured in angstroms.

V. CONCLUSION

We have implemented a computationally efficient version
of the XDM model of Becke and Johnson [17-21] for DFT
calculations, which allows structural studies of both intermo-
lecular and intramolecular electronic dispersion effects.
These effects have been missing in routine DFT calculations.
For the calculation of energy, we examined two approaches,
a conventional SCF and a perturbative one where the elec-
tron density matrices are not reoptimized after the dispersion
terms are added. We have shown that the deviation of density
matrix due to the addition of dispersion is on the order of
1073, and the relative error in total energy is the square of the
error in density matrix. This error in density matrix also
causes an error in the nuclear gradient calculation of the
same magnitude. Thus, the perturbative approach constitutes
a good approximation. This finding will greatly simplify the
implementation of electronic dispersion models when this
level of error is acceptable. The reason is that it is far from
trivial to take the derivative of the dispersion energy with
respect to the density due to the complexity of the formalism.
We have also examined the approximation of obtaining the
nuclear derivatives with the classic part of XDM only (i.e.,
assuming the derivative of the dispersion coefficients is very
small with respect to the nuclear motion), and found that the
error is small (less than 1073 a.u.) for the first and second
derivatives. The new implementation was then applied to
several test cases for which a lack of dispersion was sus-
pected to be the cause of observed errors in computed ener-
gies and structures. In the case of n-alkane series, XDM has
essentially corrected the erratic behavior of B3LYP where
the error of the total energy increases with the size of the
system. For the structural calculation of a dipeptide
(tyrosine-glycine), the addition of the dispersion interaction
with XDM has reversed a previous structure prediction with
B3LYP, bringing qualitative agreement between DFT and
MP2. The inclusion of dispersion with XDM has also re-
duced the errors of B3LYP for the isomerization energy and
bond-dissociation energy of alkanes. The significant im-
provement of the results presented here illustrates the general
applicability of the XDM model. Further improvement can
be achieved by reoptimizing the parameters of the XDM
model in combination with B3LYP and other accurate func-
tionals [30,45].
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APPENDIX A: THE XDM DISPERSION CONTRIBUTION
TO THE FOCK MATRIX

In this appendix, we will derive the expression of the
dispersion contribution to the Fock matrix based on the
density-functional R~%-only model [19], an early version of
XDM model. In this model, the dispersion coefficients have
the following expression:

(M) (M?),;

1 M), + M), (A1)

Here «; is the polarizability for atom i, and (M?); is the
average of the square of the norm of the dipole moment of
the exchange hole of a point in atom i. In a molecular envi-
ronment, a; and (M?); are effective atomic quantities that
depend on the molecular electron density. Specifically, the
electron density p(r), which is the sum of the spin densities
po(r) and pg(r), is partitioned into atomic contributions
through the following weighting function w,(r):

free
wi(r) = (l‘)

(A2)
2 pfree I‘)

where plree(r) is the electron density of the free atom. With
this weight function, the density of an atom in a molecule
can then be defined as

pi(r) = wi(r)p(r). (A3)

Since the polarizability of a free atom is found proportional
to the volume, an effective atomic volume is defined as

Vi = f pi(r)r?d3r, (A4)

so that the effective atomic polarizability a; can be defined as

Vi
;= Vfree alfree‘ (AS)
The other quantity that determines the Cq value, (M?);, is an

average over the magnitude of the dipole moment of all the
exchange holes in the atom,

(M?);= f pi(0)[do(x) + dj(r)]d’r, (A6)
where d,(r) is the norm of the dipole moment d,(r) of the
exchange hole of the spin o at the point r. The norm of the
BR exchange hole is simply the variable b as defined by Eq.
(17) of Ref. [29]. The original solution of the BR exchange
hole in Ref. [29] was numerical. We have developed an ana-
lytical fit of it [30] such that d,, becomes an analytical func-
tion of p,, Vp,. V?p,. and 7,:

d(f = d(T(p(T’Vp(T7Vzp0" 7-(7') = d(r(g(r)’ (A7)
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€5= (P VP V2P0 o).
The details of the expression can be readily obtained from
Ref. [30].
With Cg;; defined, one can now evaluate its derivative
with respect to the density matrix, starting from Eq. (2):

2 6
o= Epaw.iiRij (< 2 c?ozi &(Mz)
- i#j (ai<M2>j)2 ](?PZV aP”

One can use Egs. (A5) and (A4) to obtain the following
expression for da;/ P},

ga; _ af"* f 3 9Pg

=5 Wir; .
) LoPy,

1

). wo

(A9)

(Note that the symbols r and d’r are dropped from the above
equation and the ones below for a shortened look of equa-
tions.)

Similarly, one can obtain the expression for &(M?);/ apPy,
using Eq. (A6):

M2, ad>
u:f( (d2+dﬁ) Z o+ wp “). (A10)
Py, Py, Py,

From Eq. (A7), we can formally obtain the expression for
ad.,| IP;
ad>. ad, JE

=27

oPs, T 9E 9P,

(A11)

Bringing all the above expressions to Eq. (A8) yields

- Epaw iR 2>Aa1f'ree 3.9Pg
<M2> )2 J Vfree Wil ﬂPU
l#/ i
ad> 9E
+o;| |w; d2 +d -~11.
f( e P" s aa,aP“ﬂ

(A12)

After some reorganization of indexes for better computa-
tional efficiency, one obtains the final expression Eq. (3) with

afree Ezd R6
Gi=—4 ZA,--<M2>-, Hi=2A<,-a-, Ajj Y
Vlt'eejs&i ’ J#i m ( 1<M2>J)2
(A13)

The final expression may look more complicated than a
standard DFT calculation, but it has a similar cost. A stan-
dard DFT functional has in general the same variables as d,,
(although not all the variables are in every functional), and
its contribution to the Fock matrix can be expressed as

Eaf IE

sEIPT, . (A14)

The most CPU-intensive steps in the implementation of Eq.
(A14) are the computation of the variables and the formation
of the Fock matrices on the grid as they involve loops over
the basis function pairs for each grid point. The evaluation of
df 1 9¢ takes little time. In comparison, Eq. (3) adds a loop of
atoms for each grid point for the calculation of XDM, the
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cost of which is still relatively small because the number of
atoms that have effectively nonzero contribution to a grid
point is much less than the number of effective basis function
pairs. Furthermore, the calculation of the terms (G; and H,)
involving double loops over the atoms can be carried out
independently of the loop over the grid points. In practice,
we see little CPU time increase when the XDM contribution
is added to a functional that has the same variables.

APPENDIX B: THE NUCLEAR FORCE OF THE
ELECTRONIC PART OF THE XDM DISPERSION

The second term in Eq. (5) can be reorganized as the
following using G; and H; defined in Eq. (A13):

2 6
> EyawiiRij o

2 6,0 (B1)
i#j Coj !

= 2 (G,V;i + Hi<M2>?)~

Vi in the above equation can be derived from Egs.
(A3)—(A5):

X
V? = f (Wf}"?p + Wir?pX - 3erxrxp5xi) + f Wir?p7

(B2)
with
pfree,x
W;( = (5xi - Wi)m, p)fcree,x — 2 Pge;e(qsﬂgbv)x(sﬂx&yx’
! uv
; J
(B3)

where ngf is the total electron density of the free atom. Of
the quantities to be calculated, the gradient of the basis func-
tions and the gradient of the total density are already avail-
able in a standard DFT gradient calculation. Here the symbol
J* denotes taking the derivative of the weights used in the
numerical integration with respect to x:

f f)dPr = 2 Wirf(ry). (B4)
k

The algorithm used to calculate the weight derivatives can be
found in the literature [46].

Similarly, the formula for the calculation of (M?)¥ can be
obtained by taking the derivative of Egs. (A6) and (]A3):
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2 2
(M) = f <(w§‘p +wip)(d+ dg) + wip 2 5(%&; ” gX)
:

+ f wip(do+dp). (B5)

To take the advantage of the existing efficient algorithm
and code for standard DFT calculations and achieve effi-
ciency, the second term in the gradient of the dispersion en-
ergy [Eq. (B1)] can be reorganized as follows using the ex-
pressions for V} and <M2>}‘:

2 2
> GV + HAMYY) = f (Mp" FNpS _ﬁ(daa ; ) gx)
¢

1

+ f Mp + f p[3Gw,r.r, + 0(x)],

(B6)
with

Li=Gr} + H{d,+dy), (B7)

M= wlL, N=XHw, 0% =>wL,.
i i i

This can be compared with the gradient of XC energy with
regular DFT functionals by taking the derivative of a normal
functional with respect to x:

a X
E§C=f2l§‘+f f.

¢ 9§

One can see that the first two terms in Eq. (B6) are similar to
those in Eq. (B8) since the density is part of the & variables.
Thus, the code for the latter can be utilized for the former.
Among the various quantities to be computed in the two
equations, the calculation of the variables & and their explicit
derivatives & dominates the CPU time as they require the
loop over basis function pairs for each grid point. The addi-
tional cost for the dispersion is in the calculation of the last
term in Eq. (B6) and the variables in Eq. (B7). All those
quantities except Q(x) involve looping over atoms for each
grid point. As discussed in Sec. II, the computational cost
associated with this kind of loops takes relatively little time
since only the atoms that overlap with the grid point need to
be included. The calculation of Q(x), on the other hand, in-
volves looping over pairs of atoms that overlap with the grid
point. Still, the number of such pairs is much smaller than
the number of basis function pairs (<1%), and thus the ad-
ditional computational cost is inconsequential.
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